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Introduction

Open ended wavegulde structures have recently re-
ceived considerable attention as radiating elementsl, 2,
Mutual coupling between such structures has practical
significance and has been studied by various methods.
The equivalent static approach3 and the ray theory of
diffraction® have provided solutions for many interest-
ing problems but have limitations due to difficulties
in including higher order rays5,6.

An alternate approach based on Wiener-Hopf techn-
ique’ provides solutions for certain classes of bound-
ary value problems, In this paper, the boundary value
problem concerning two parallel plate waveguides having
the same width and the same axis of symmetry is formu-
lated and is solved using Wiener-Hopf technique. The
final results are expressed in terms of an integral
extending from zero to infinity, which is then evaluated
numerically8 using the Gauss-Laguerre quadrature
formula?d.

The solutions are also reduced to those obtained
using the ray theory of diffraction. The transformed
Green's function G(a) assoclated with the Wiener-Hopf
equation is expanded in a power series, which after
integration and expansion of each term, the ray theory
solutions are found by retaining the first term only.
It is found that the resulting series are convergent if
[(kd)2/4RL]<1, where d and L are the width and
separation distance of two waveguides. The ray theory
solutions are found by using the first term together
with the modified diffraction coefficient of Leel0,1l,

The exact and approximate solutions are divided
into three terms. The first term gives the contri-
bution due to exciting wavegulde only, where as the
second and third terms give the contribution due to
coupling between two waveguides.

Formulation of the Problem

Consider two infinitely thin and perfectly con-
ducting parallel plate waveguides of width 2a and
separated by a distance L and located in free space
as shown in Figure 1. With a time factor e iWt, an
incident TEq,4 mode, % odd, is assumed to be prop-
ogating in the exciting waveguide along the positive
2-direction, in the form
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where vy, = [(Z'ir/Za)2 - 1(2]!5 and K=XK; +1K ig
the propagation constant in free space, ~Using Jones's

method of formulatingl the following modified Wiener-
Hopf equation of second kind is obtained

stigated using the Wiener-Hopf technique. For a TE

d, reflected and transmitted fields are found and 0, %

One term is due to the exciting waveguide alone and the other two are due to inter-

exact solutions are further reduced to derive approximate
of diffraction with a modified diffraction coefficient.
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where o = ¢ + i1, G(o) = cosh yva/y exp(ya) and ¢,

(a,0) 1s the Fourier transform of aperture electric
field to be determined. Jj(a) and J_(0)
and are analytic in the upper (T > -K3) and lower

(T < K2) halves of the o-plane, respectively. It can
be shown that ¢1(a,a) satisfies
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The upper and lower signs belong respectively to S(a)
and D(o). These functions satisfy the following
integral equation
co=1d
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where
S (o) » A=1
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D(o) . A= -1

and G+(u) is the "plus pert" of G(a)
GH(0)G_ ().
together with equation (3) gives
®(x,0) can be determined.
scaler potential ¢(x,z) can be found by an inverse
Fourier transform. To determine E(a) one notes that
the right handside of equation (5) is of the form

(G(a) =

®1(a,a) and hence
The final solution of the
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are unknown

1

A solution of the above integral equation
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For large L, the major contribution is from the inte-
gral over a small neighborhood around the branch point
B = =K. Deforming the contour in the lower half plane
and expanding G_(B) and E(B) in a taylor series
about the branch point B = - the first term gives
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The new variable U in the above integral is chosen to
transfer the integral to a form suitable for numerical

integration, Equation (7) with (5) and (3) gives
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I-Radiation field
Outside waveguides, the scattered electric field is

given by wo+iT
R e I D "N EI T S CED
2T
=00+ T

which with a saddle point integration at far zone gives

I
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Replacing for ¢;(a,0) from (a), the radiated field
$38(p,0) 1is given by three terms, The first term is
the field radiated from open end of the exciting wave-
guide alone, and the second and third terms are the
contributions of multiple interactions between wave-
guldes.

II-Reflected and transmitted fields
Inside the exciting waveguide the reflected
electric field is given by

oodi T
b.(x,2) = =2 | 0 (a,0) SOEETIORgg ||k, (1)
2T coshya
=o+iT

After closing the contour in the upper half plane and
using residue theorem one finds,

8, (x,2)= z [®n+ R(1)>erz + R(Z) ) (2)]cosGla)  (14)
m=1,3,
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Similarly inside the coupled waveguide the
transmitted electric field is given by equation (13),
but to evaluate the integral the contour must be closed
in the lower half plane to give

b= § (1 nal @) + 1) cos @) (15)

m=1,3,

Again the first terms in (14) and (15) are due to the
exciting waveguide only, while other two terms are the
contributions due to interaction (coupligg) between two
waveguides. 52&(2), Ty, m(z) and Ti (z) are due
to fields scattéred by each waveguide al0ne and decay
with z according to Sommerfeld radiation conditiom.
Thus, at far distances from the openings the only
contribution for the reflected and transmitted f%ﬁ}ds
1s due to the coefficients Ry,m, Ré and Ty
respectively. The reflection and trandmission co—
efficients which are functions of 2z can be evaluated
numerically similar to T(a) in equation (8).

Reduction of the solution to that of ray theory of
Diffraction

If the Green's function G(o) i1s expanded in a

power series T(0) can be written as
T =f,1,2,.. Tal® 16)
where o
o _ipL 1 ,forn=0
T (a) =_1_ (-2!8) e dgB [
n € “yarrl B +a ?
n
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@an

In the neighborhood of B = -K, the function
(B~-K )‘:“l }5 regular and smooth and can be replaced
by (-2K)n- Therefore, deforming the contour in
(17) it may be shown that, the final result is a Whit-
taker function, which after an expansion and retaining
first term only gives

oy oL(KL= 1) 4
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Retaining only the first term in (18), its substitution
in exact solutions of radiated, reflected and trans-
mitted fields gives the results obtained by using ray
theory of diffraction in conjunction with the modified
diffraction coefficient of Lee., However,higher terms of
T(a) provide corrections when L 1s not large enough.

Results and Discussions

Some computed results for the radiated power
and reflected and transmitted fields for a waveguide
size 2a/A = 0.6 and TEp 3 excitation are shown in
figures (2) to (4). The infinite integrals in the
respective equations are computed by a GaussaLaguerre
quadrature formula with 15 intervals. As expected with
decreasing KL, the direction of the main lobe of
radiation moves progressively away from the forward

direction. The reflected and transmitted flelds are
oscillating functions of KL with period 7 and decay
gradually to reach their final values for KL = o,

Equation (18) shows that the series is conver-
gent for v <1, L large, and the solutions of dif-
fraction theory can be obtained by retaining first term
only. Higher oxder terms give correction terms when
the separation distance L 1s not large enough,



Similar results for other excitation modes can be found

by using proper Green's functioms.

The method may also

be extended to study the coupling between parallel

plate waveguides of different widths or arrays of wave-
guides.
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Fig. 2 Radiation Pattern of the TEo.l mode
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Fig. 3 Reflection Coefficients of the TEj | mode for d/\ =06
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